Mask usage recognition using vision transformer with transfer learning and data augmentation

نویسندگان

چکیده

The COVID-19 pandemic has disrupted various levels of society. use masks is essential in preventing the spread by identifying an image a person using mask. Although only 23.1% people correctly, Artificial Neural Networks (ANN) can help classify good to slow Covid-19 virus. However, it requires large dataset train ANN that correctly. MaskedFace-Net suitable consisting 137016 digital images with 4 class labels, namely Mask, Mask Chin, Mouth and Nose Mouth. classification training utilizes Vision Transformers (ViT) architecture transfer learning method pre-trained weights on ImageNet-21k, random augmentation. In addition, hyper-parameters 20 epochs, Stochastic Gradient Descent (SGD) optimizer rate 0.03, batch size 64, Gaussian Cumulative Distribution (GeLU) activation function, Cross-Entropy loss function are used be applied three architectures ViT, Base-16, Large-16, Huge-14. Furthermore, comparisons without augmentation conducted. This study found best ViT Using this dataset, research reaches accuracy 0.9601 data, 0.9412 validation 0.9534 test data. shows model data improves mask usage, even better than convolutional-based Residual Network (ResNet).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer Incremental Learning Using Data Augmentation

Due to catastrophic forgetting, deep learning remains highly inappropriate when facing incremental learning of new classes and examples over time. In this contribution, we introduce Transfer Incremental Learning using Data Augmentation (TILDA). TILDA combines transfer learning from a pre-trained Deep Neural Network (DNN) as feature extractor, a Nearest Class Mean (NCM) inspired classifier and m...

متن کامل

pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)

فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...

15 صفحه اول

Meta-Learning with Selective Data Augmentation for Medical Entity Recognition

With the increasing number of annotated corpora for supervised Named Entity Recognition, it becomes interesting to study the combination and augmentation of these corpora for the same annotation task. In this paper, we particularly study the combination of heterogeneous corpora for Medical Entity Recognition by using a meta-learning classifier that combines the results of individual Conditional...

متن کامل

Human Computer Interaction Using Vision-Based Hand Gesture Recognition

With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...

متن کامل

Improving Deep Learning using Generic Data Augmentation

Deep artificial neural networks require a large corpus of training data in order to effectively learn, where collection of such training data is often expensive and laborious. Data augmentation overcomes this issue by artificially inflating the training set with label preserving transformations. Recently there has been extensive use of generic data augmentation to improve Convolutional Neural N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Intelligent systems with applications

سال: 2023

ISSN: ['2667-3053']

DOI: https://doi.org/10.1016/j.iswa.2023.200186